

Cameron Mott AnyLogic Conference 2016 November 16 & 17, 2016

AGENT-BASED EXPLORATION OF SYSTEM NEGOTIATION AND REDISTRIBUTION OF GOALS

Roadmap

- Intro
 - Southwest Research Institute
- Research Topic
- AnyLogic to the rescue
- Application and Model
- Conclusion
 - Q&A

About Southwest Research Institute®

Organizational Characteristics

- Independent and nonprofit [501(c)(3)]
- Revenue provided by R&D contracts
- Broad technological and scientific capabilities
- Decentralized organization
- Internal research encouraged
- Unique Client-Oriented intellectual property policy

10 Operating Technical Divisions

- Applied Physics
- Applied Power
- Mechanical Engineering
- Engines, Emissions, and Vehicle Research
- Fluids and Lubricants Research
- Defense and Intelligence Services
- Intelligent Systems
- Space Science and Engineering
- Geosciences and Engineering
- Chemistry and Chemical Engineering

SwRI Statistics

- ESTABLISHED: 1947
- STAFF: >2700
- GROSS REVENUE FY2015: >\$592M
- FY15 Projects: >6,300
- CAMPUS: ~4.86 km2 (1200 Acres) in San Antonio, TX
- ◆ LABS/OFFICES: > 204,400 m² (2.2M ft²)
- Over 1,235 Patents; 41 R&D 100 Awards
- FY15 IR&D: \$7.2M, 194 projects

Deep Sea to Deep Space

And Everything Between

Robotics, Automation, and **Simulations**

Spacecraft & Planetary Sciences

Energy

Regenerative Medicine

Deep Space -**New Horizons**

Lubricants **Testing**

Engine Design

and Optimization

Materials & Engineering

ActiveITS

Infrastructure Communications

Deep Sea -Alvin

Pharmaceuticals

& Bioengineering

Water and Geological Engineering

Autonomous Vehicles at the Institute

Big Red
Class VIII Freightliner

MARTI Ford Explorer

1165 Military HMMWV

UAVs: Tri, Quad and Hex rotors

Simulated Vehicles

Executive Summary of Research Topic "Making awesome things more awesome!"

- Each autonomous vehicle is different, with unique characteristics that fit their purpose.
- Working together, there are advantages that each could bring that would further a purpose beyond the limited capability of one vehicle or one type of vehicle (synergy).
- Challenge Create a team of autonomous vehicles that communicate with each other in a decentralized manner and solve a large system goal through dynamically allocating tasks to each vehicle according to their capabilities and location.

SyNRG – System Negotiation and Redistribution of Goals

- Software Architectural Framework
 - Allows intelligent agents to represent and share knowledge
 - Form teams based on capabilities that contribute to the system goal
 - Coordinates task completion dynamically
 - Distributed amongst teamed agents

Example

- Example Mission: Blended Search & Rescue with Refueling
- Includes autonomous ground, air and simulated vehicles with a variety of capabilities
- Environment includes an unknown number of capsules that are in unknown locations and may need refueling. The vehicles have a variety of capabilities and speeds, not all vehicles can refuel the capsules and not all can identify the fuel level of known capsules.
- Goal: Find all of the capsules and refuel them

Capabilities

- 1 Sense Objects
- 2 Observe Change 🗸
- 3 Travel Off-Road
- 4 Refuel
- 5 Identify Objects

-1			- 1
-1		٠	
-1		D.	٧.
. 1	_	_	
4	-	-	_

٢	-		-
ŀ			d
k	ı.	я	ı
Г	٠	ч	,
	_	1	r.
			1

Goal – Search, Observe, Identify and Refuel					
Tasks	Capabilities	Priority	Trigger		
	1 2 3 4 5				
Search	~	36	Α		
Observe	\checkmark	29	В		
Identify	V	67	С		
Refuel	\checkmark	82	D		

		SWRI DE	1000	***
Search	V	✓	\checkmark	✓
Observe	✓			
Identify				V
Refuel	~	✓	✓	

Goal Definition

Capabilities Goal Definition Establish a Team

Establish a Team

Capabilities Goal Definition Establish a Team

AnyLogic to the rescue

- Expensive to execute on physical vehicles
 - Simulation environment needed
 - Traffic simulation software would not be appropriate
 - Physics simulations are incredibly feature-rich but complicated
- Investigated AnyLogic, quickly able to provide proof-ofconcept
- Intelligent agents were modeled in AnyLogic representing various capabilities
- World environment where the agents can interact
- Logic and interactions between agents could be simulated and quantified

Agent Model

Statemachine

Environment

Executing Tasks

- Searcher is exploring
- Sharing knowledge of encountered objects
- Other vehicles are waiting for a task trigger

Example of Task Distribution

- Task trigger occurs
 - Object of interest has been found
 - Trigger sent to teammates –
 Needs Identification

 Vehicle with Identify capability responds by planning a path to the object

Model in operation

Discovering the world one agent at a time

Sharing knowledge of the world

Collaborative view

Running multiple agents and graphing progress

Results

- Multiple (up to 45) agents running simultaneously in an AnyLogic model
- Enabled algorithm execution and development
 - Optimization of task distribution
 - Goal achievement with given resources
- Capability to address many limitations
- Years (3 likely) ahead of implementation

Conclusion

- Successful demonstration of team negotiation and dynamic task allocation
- Enabled through AnyLogic agent-based modeling

Questions?