論文

The Role of Learning on Industrial Simulation Design and Analysis


The capability of modeling real-world system operations has turned simulation into an indispensable problem-solving methodology for business system design and analysis. Today, simulation supports decisions ranging from sourcing to operations to finance, starting at the strategic level and proceeding towards tactical and operational levels of decision-making. In such a dynamic setting, the practice of simulation goes beyond being a static problem-solving exercise and requires integration with learning. This article discusses the role of learning in simulation design and analysis motivated by the needs of industrial problems and describes how selected tools of statistical learning can be utilized for this purpose.

Health Care Emergency Plan Modeling and Simulation in Case of Major Flood


Health care system is one of the most critical units in case of disasters. Floods cause an increase of emergency patient flow that may overwhelm hospital resources. In this paper, we present a simulation model that evaluates health care emergency plan and assesses the resilience of the Ile-de-France region in case of a major flood. We combined in the model the health care process with a Markov chain flood model. The results can be used to elaborate an optimized strategy for evacuation and transfer operations. We provide a case study on three specialties and quantify the impact of several flood scenarios on the health care system.

Simulation-Based Design and Traffic Flow Improvements in the Operating Room


A simulation model was created to model the traffic flow in the operating room. A key research challenge in operating room design is to create the most efficient layout that supports staff and patient requirements on the day of surgery. The simulation allows comparison of base model designs to future designs using several performance measures. To develop the model, we videotaped multiple surgeries in a set of operating rooms and then coded all activities by location, agent and purpose. Our current analysis compares layouts based on total distance walked by agents, as well as the number of contacts, measured as the number of times agents must change their path to accommodate some other agent or physical constraint in the room. We demonstrate the value and capability of the model by improving traffic flow in the operating room as a result of rotating the bed orientation.

Data-Driven Simulation for Healthcare Facility Utilization Modeling and Evaluation


Utilization evaluation for healthcare facilities such as hospitals and nursing homes is crucial for providing high quality healthcare services in various communities. In this paper, a data-driven simulation framework integrating statistical modeling and agent-based simulation (ABS) is proposed to evaluate the utilization of various healthcare facilities. A Bayesian modeling approach is proposed to model the relationship between heterogeneous individuals’ characteristics and time to readmission in the hospital and nursing home. An ABS model is developed to model the dynamically changing health conditions of individuals and readmission/discharge events. The individuals are modeled as agents in the ABS model, and their time to readmission and length of stay are driven by the developed Bayesian individualized models. An application based on Florida’s Medicare and Medicaid claims data demonstrates that the proposed framework can effectively evaluate the healthcare facility utilization under various scenarios.

Simulating a Multi-Airport Region to Foster Individual Door-To-Door Travel


Airports are intermodal hubs and natural interfaces between ground transport and air transport. In the current DLR project “Optimode.net”, an innovative approach is being developed to extend the management of an airport not only to airport landside and terminal processes but to go even further and incorporate feeder traffic in the management of airport processes. Thus providing travelers with a real door-to-door service and letting airport stakeholders benefit from efficient airport management. Technical core of the project is a simulation environment consisting of nine different simulation models with various simulation methods and abstraction levels. In this paper the simulation environment of a multi airport region which is used in the Optimode.net project will be described in detail and also the interaction of the different simulation modules will be explained. We will also show how this complex simulation environment is used to foster individual door-to-door travel and proactive airport management.

Optimizing Home Hospital Health Service Delivery in Norway Using a Combined Geographical Information System, Agent Based, Discrete Event Simulation Model


Home hospital services; provide some hospital level services at the patient’s residence. The services include for example: palliative care, administering chemotherapy drugs, changing dressings and care for newborns. The rationale of the service is that by providing high quality care to patients at their homes their experience of the care is better and hence they respond to the treatment and/or recover quicker and are less likely to need to report to hospital to receive care for more serious/expensive conditions. The aim of this study is to evaluate the effectiveness of the home hospital service, to optimize the current configuration given existing constraints and to evaluate potential future scenarios. Using a combined discrete event simulation, agent based model and geographical information system we assess the system effects of different demand patterns, appointment scheduling algorithms (e.g. travelling salesman problem), varying levels of resource on patient outcomes and impact on hospital visits.

Purpose and Benefits of Hybrid Simulation: Contributing to the Convergence of its Definition


There is a growing trend in the number of M&S studies that report on the use of Hybrid Simulation. However, the meaning and the usage of the term varies considerably. Indeed, the hybrid simulation panel during last year’s conference (WSC2016) laid bare the strong views, from the panelists and audience alike, as to what constitutes a hybrid model and what is new? The ensuing debate set the scene for this year’s paper, in which we discuss the various perspectives on hybrid simulation by focusing on three aspects: its definition, its purpose and its benefits. We hope this paper will pave the way for further studies on this subject, with the objective of achieving a convergence of the definition of hybrid simulation.

A Distributed Simulator Platform for Rapid Industrial User Experience Prototyping


The research and development of novel user experience concepts in well-regulated industrial domains face different challenges. Systems in these domains often require backward compatibility and integration with legacy sub-systems and protocols. They must comply with well-defined procedures and standards, and must pass through stringent evaluation processes involving actual users under realistic conditions and scenarios. As a consequence, prototyping and simulations are extensively used. During product development, the level of fidelity of a simulation prototype will directly impact the quality of end-user feedback, minimizing ex-pensive rework of UX in later stages of a project. This paper describes the Distributed Industrial Simulation Platform (DISP), a simulation framework developed within GE that facilitates the rapid prototyping and evaluation of novel industrial UX systems. We present the DISP design and main services showing how it has been used in support of the development and simulation of two UX prototypes in the railroad transpor-tation domain.

Agent-Based Modeling Framework for Simulation of Complex Adaptive Mechanisms Underlying Household Water Conservation Technology Adoption


Using new technologies to maintain, construct, and reuse naturally created products like asphalt, soils, and water can reserve the environment. The objective of this study was to specify and model the behavior of households regarding the installation of water conservation technology and evaluate strategies that could potentially increase water conservation technology adoption at the household level. In particular, this study created an agent-based modeling framework in order to understand various factors and dynamic behaviors affecting the adoption of water conservation technology by households. The model captures various demographic characteristics, household attributes, social network influence, and pricing policies; and then evaluates their influence simultaneously on household decisions in adoption of water conservation technology. The application of the proposed simulation model was demonstrated in a case study of the City of Miami Beach. The simulation results identified the intersectional effects of various factors in household water conservation technology adoption and also investigated the scenario landscape of the adoptions that can inform policy formulation and planning.

The History of Simulation Modeling


During the past half-century simulation has advanced as a tool of choice for operational systems analysis. The advances in technology have stimulated new products and new environments without software standards or methodological commonality. Each new simulation language or product offers its own unique set of features and capabilities. Yet these simulation products are the evolution of research, development, and application. In this paper we interpret the historical development of simulation modeling. In our view simulation modeling is that part of the simulation problem-solving process that focuses on the development of the model. It is the interpretation of a real production (or service) problem in terms of a simulation language capable of performing a simulation of that real-world process. While “interpretation” is in the “eyes of the beholder” (namely us) there are some historical viewpoints and methods that influence the design of the simulation model.