論文

Higher Production Plan Realization Through Dynamic Simulation


Production plans are based on fair assumptions of process performance and all operation parameters are taken as averages. There are a number of events that happen in any manufacturing setup during the course of production like periodic delivery of raw materials or changeovers on a machine. The interaction between these events is non-linear and cannot be easily visualized. As a result of which most of the production plans in any company have only a limited realization. This paper provides an example of how simulation using AnyLogic has been applied in one such plant scenario to visualize the plan outcome.

Dynamic Ride Sharing Using Traditional Taxis and Shared Autonomous Taxis: A Case Study of NYC


This study analyzes the potential benefits and drawbacks of taxi sharing using agent-based modeling. New York City (NYC) taxis are examined as a case study to evaluate the advantages and disadvantages of ride sharing using both traditional taxis (with shifts) and shared autonomous taxis. Compared to existing studies analyzing ride sharing using NYC taxi data, reserarchers from the Purdue University proposed a model that incorporates individual heterogeneous preferences; compared traditional taxis to autonomous taxis; and examined the spatial change of service coverage due to ride sharing.

Evaluation of The Effect of Chickenpox Vaccination on Shingles Epidemiology Using Agent-Based Modeling


Biological interactions between varicella (chickenpox) and herpes zoster (shingles), two diseases caused by the varicella zoster virus (VZV), continue to be debated including the potential effect on shingles cases following the introduction of universal childhood chickenpox vaccination programs. Researchers investigated how chickenpox vaccination in Alberta impacts the incidence and age-distribution of shingles over 75 years post-vaccination, taking into consideration a variety of plausible theories of waning and boosting of immunity.

Towards Circular Economy Implementation: An Agent-Based Simulation Approach for Business Model Changes


This paper introduces an agent-based approach to study customer behavior in terms of their acceptance of new business models in Circular Economy (CE) context. In a CE customers are perceived as integral part of the business and therefore customer acceptance of new business models becomes crucial as it determines the successful implementation of CE. However, tools or methods are missing to capture customer behavior to assess how customers will react if an organization introduces a new business model such as leasing or functional sales. The purpose of this research is to bring forward a quantitative analysis tool for identifying proper marketing and pricing strategies to obtain best fit demand behavior for the chosen new business model. This tool will support decision makers in determining the impact of introducing new (circular) business models.

Towards Circular Economy Implementation in Manufacturing Systems Using A Multi-Method Simulation Approach to Link Design and Business Strategy


The recent circular economy movement has raised awareness and interest about untapped environmental and economic potential in the manufacturing industry. One of the crucial aspects in the implementation of circular or closedloop manufacturing approach is the design of circular products. While it is obvious that three post-use strategies, i.e., reuse, remanufacturing, and recycling, are highly relevant to achieve loop closure, it is enormously challenging to choose “the right” strategy (if at all) during the early design stage and especially at the single component level. One reason is that economic and environmental impacts of adapting these strategies are not explicit as they vary depending on the chosen business model and associated supply chains. In this scenario, decision support is essential to motivate adaptation of regenerative design strategies. The main purpose of this paper is to provide reliable decision support at the intersection of multiple lifecycle design and business models in the circular economy context to identify effects on cost.

Analyzing Emergency Evacuation Strategies for Mass Gatherings using Crowd Simulation and Analysis framework: Hajj Scenario


Hajj is one of the largest mass gatherings where Muslims from all over the world gather in Makah each year for pilgrimage. A mass assembly of such scale bears a huge risk of disaster either natural or man-made. In the past few years, thousands of casualties have occurred while performing different Hajj rituals, especially during the Circumambulation of Kaba (Tawaf) due to stampede or chaos. During such calamitous situations, an appropriate evacuation strategy can help resolve the problem and mitigate further risk of causalities. It is however a daunting research problem to identify an optimal course of action based on several constraints. Modeling and analyzing such a problem of real-time and spatially explicit complexity requires a microscale crowd simulation and analysis framework. Which not only allows the modeler to express the spatial dimensions and features of the environment in real scale, but also provides modalities to capture complex crowd behaviors. In this paper, we propose an Agent-based Crowd Simulation & Analysis framework that incorporates the use of AnyLogic Pedestrian library and integrates/interoperate AnyLogic Simulation environment with the external modules for optimization and analysis. Hence provides a runtime environment for analyzing complex situations, e.g., emergency evacuation strategies.

Agent-Based Simulation Modeling of a Bus Rapid Transit (BRT) Station Using Smart Card Data


A Bus Rapid Transit (BRT) station with multiple loading zones tends to have a longer passenger-bus interface and, thus, lead to longer passenger walking times and longer bus dwell times than ordinary bus stops. As a way to reduce bus dwell times in a BRT station, this study focuses on eliminating delays in passengers’ reaction to their desired bus by designing an improved passenger information system (PIS) that can increase passengers’ certainty about the bus stopping location. This study develops an agent-based simulation model based on observations from a BRT station in Brisbane, Australia to reflect a real BRT operations and passenger flows. The input parameters for the simulation model are calibrated with actual data including smart card records, field measurements, and video recordings. After mapping passenger moving and waiting patterns, and allocation logic of bus loading areas, various what-if analyses can be performed to design better passenger information systems.

Simulating Recovery Strategies to Enhance the Resilience of a Semiconductor Supply Network


Enhancing supply chain resilience is of vital importance in today’s business to manage and mitigate the risks, especially in the semiconductor industry challenged with intrinsic long cycle times and short product life-cycles. Transferring production from a primary site to an alternative site after a disaster is one of the strategies to ensure resilience of the supply network. In this study, different types of alternative sites with various levels of preparedness are investigated. A discrete-event simulation is used to evaluate their operational and financial impacts under four different disruption scenarios. The simulation outcomes demonstrate unexpected positive benefits of various alternative sites in terms of fast recovery and resilience building.

Modeling and Simulation of Port-Of-Entry Systems


This paper describes a suite of simulation models for Port-of-Entry systems, dubbed POESS (POE Simulation System). Port-of-Entry Simulation System was developed with the support of the U.S. Department of Homeland Security (DHS) for use primarily by the U.S. Customs and Border Protection (CBP) agency. Port-of-Entry Simulation System aims to assist CBP in Port-of-Entry design and operational decision making. A Port-of-Entry Simulation System simulation model of the Bridge of the Americas (BOTA) POE, located at El Paso, Texas, is described as an example.

Aircrew Manpower Supply Modeling Under Change: an Agent-Based Discrete Event Simulation Approach


This paper deals with manpower planning using a dynamic and interactive simulation system that is agile and adaptive to robustly accommodate change — without requiring a complete rewrite. The simulation architecture extends the current hybrid modelling paradigm which integrates agent based (AB) constraints and controls with a discrete event simulation (DES) methodology. This allows for a more expressive, authentic representation of both process flows and agent policies that captures the advantage of system dynamics (SD) modelling by integrating agile controls with response feedback. This approach is inspired by the need to develop an aircrew training pipeline simulation for the Australian Defence Force (ADF) that supports the real needs for strategic manpower planning in a context of policy and requirements change management. A case study is provided to illustrate the challenges and approach.