Simulation of Maternity Ward Operations


This model simulates the maternity ward in a hospital currently under construction. Since the new hospital building will replace an existing ward and since the new maternity ward will be staffed by current personnel, the model also simulates current facilities.

The purpose of the model is to support discussions related to which resources, capacity, and work methods are required on the new ward. One relevant discussion is whether to apply an “integrated philosophy” - where the mother and child stay in the same room during their entire stay - or whether dedicated rooms for antenatal care, delivery and postnatal care are preferred, as used in the current system.

The project was carried out for Karolinska University Hospital in the Stockholm County, Sweden.


Since this problem is on a micro and operative level of abstraction, Discrete Event Modeling is naturally the preferred modeling choice. This enables the handling of resources, processes, patients, etc. in the best way. Further, since this issue requires the comparison of a two distinctive alternatives, it is advantageous to run these scenarios/alternatives in parallel, instead of in sequence. In this way it is possible to pinpoint differences in performance given the same demand. From a modeling perspective, the mother-to-be is “cloned” and sent (and her clone) simultaneously to the two different process alternatives. This method was also chosen especially in this case to support the discussions during two workshops.

Hospital Ward Simulation

Model of the current ward

Hospital Model

Model of the projected ward

This process model focuses on the physical resources. A number of variable parameters enabled the users to experiment with relevant scenarios. The parameters include yearly demand, number of rooms of different categories for the existing ward and future ward, relevant patient categories and their traits (such as minimum, maximum, and average time for delivery, postnatal care, etc.), proportions/probabilities for forms of care, and prioritization (when several resource types can be used for the same care process).

The process description excludes human resources. To do so the staff schedules, personnel categories, skill levels, planning strategy, etc. should be included. Given that the purpose of the model was to focus on physical resources and investments and support the discussion process, this was unnecessary. The model therefore assumes that there are always enough personnel. The caregivers are animated but are never limiting.


The primary purpose of this model was to stimulate and support the discussions and conclusions in a workshop format. The simulation “provoked” participants into better insights into their situation. From a clearly skeptical outset, the model enabled participants to see that the future scenario was in fact realizable and envisage how they could start to prepare for this.

The outcome can also be seen in the light of that fundamentals from operations management and healthcare management engineering are much easier to understand for those lacking a strong background in these fields if communicated and presented with the help of a visual simulation model. Examples of such fundamentals include:

  • Dividing a total need over several dedicated resources will always cost something in terms of effective capacity compared to having the same number of resources but fully flexible. 
  • A need evaluation must always be made per resource type – and the amount of resources per type should roughly have the same relationship as the relative needs. 
  • Historical output, result and production figures can seldom be used to take decisions for systems in the future (with different traits and circumstances).

The output and results from the simulations were summarized in a result window. Indicators were presented for the existing ward and the future ward both numerically and graphically. This enabled the evaluation of the strengths and weaknesses of each simulated scenario.

More Case Studies

  • 医薬品流通倉庫のモデル化
    数十億ドル規模売上を計上する、医薬品流通およびロジスティクス企業大手のカーディナル・ヘルス社(Cardinal Health)は、商標医薬品、ジェネリック医薬品、一般用医薬品(薬局で処方箋が無くても購入できる薬)、健康と美容アイテムおよび自社ブランド品を管理しています。彼らは、医薬品を取り巻く複雑な倉庫の流通問題に取り組みます。ブライアン・ヒース(カーディナル・ヘルス社上級解析ディレクター)とAnyLogicソフトウェアの経験ある担当者は、様々なビジネス問題を解決するためにエージェントベースのモデリングを使用し、年間300万ドル以上の経費を節減しました。
  • ハイブリッド・シミュレーションによる医療サポート-脳卒中専門救急車(Mobile Stroke Units)
    脳卒中で高度障害が起きたときの治療とリハビリの高コストの負担は老齢人口の増加でますます増えています。血栓症の多くは脳卒中を発症し、発症から4.5時間以内に血栓溶解の治療が必要になりますが、現在の搬送や病院管理では対応しきれていないのが現状です。そこで、脳卒中専門救急車(Mobile Stroke Units)が改善案として提案されました。
  • 医療ルーチンデータのシミュレーション・モデリング
    医療の専門家による様々な意思決定には、プランニング、テストおよびアセスメントツールを必要とします。医療の複雑な構造、相互作用およびプロセスは、常に変化と革新を繰り返し、課題が絶えることはありません。社会保険オーストリア協会(AASI)と提携するDWHシミュレーションサービスおよびウィーン工科大学のPatrick Einzinger氏およびChristoph Urach氏は、クリティカルな将来の意思決定の目的で、医療データを解析する機会を得ました。
  • 入院患者治療キャパシティーの評価
  • 透析患者トータルケアのニーズ
    スウェーデン 首都ストックホルムは、諸国、諸地域と同様、様々な患者グループへのヘルスケアの必要性があります。各グループは独特な特徴、特性および課題を合わせてサブ集団と見なします。今回ご紹介するシミュレーション・プロジェクトは、透析患者(医療施設の来院頻度が高いグループ)に着目しました。
  • Disaster Response Applications Using Agent-Based Modeling
    In an effort to find practical operational solutions for response to an unexpected crisis or natural disaster, Battelle, world’s largest, non-profit, independent R&D organization, needed to test the effectiveness of a 48 hour shelter-in-place order for an Improvised Nuclear Device scenario. The goal was to reduce radiation dosages received during an uncoordinated mass evacuation, by comparing immediate evacuation and shelter-in-place order.
  • Evaluating Healthcare Policies to Reduce Rates of Cesarean Delivery
    The challenge of reducing the cesarean delivery rate has been recognized by numerous researchers for years. For the first time, in research conducted for the Washington State, Alan Mills, FSA MAAA ND, a research actuary, and his colleagues reproduced this part of the United States healthcare system in a simulation model to allow the stakeholders, including health agencies, insurers, clinicians, and legislators, to test their assumptions on the model to find the right solutions.
  • Shaping Healthcare Policy Using Simulation
    An initiative by the Department of Mechanical and Industrial Engineering at the University of Toronto, the Centre for Research in Healthcare Engineering (CRHE), was in response to the immediate and compelling desire for efficiency and quality improvements in the Canadian healthcare system.
  • An Agent-Based Explanation for SPMI Living Situation Changes
    Over the past 60 years, the number of Severely and Persistently Mentally Ill (SPMI) patients in the US living in the community increased. Yet a growing minority of people with severe illness are worse off because they are homeless or incarcerated. In this case study, IBM Global Research and Otsuka Pharmaceuticals used an agent-based approach to model these remarkable swings.
  • 新薬の発売モデル
    米国大手製薬会社である1社は、新製品の発売戦略の開発 にBayserコンサルティング社を採用しました。 シミュレーション・モデリングは、会社、医師、患者間の相互作 用の再構築に応用しました。