Shaping Healthcare Policy Using Simulation


An initiative by the Department of Mechanical and Industrial Engineering at the University of Toronto, the Centre for Research in Healthcare Engineering (CRHE), was in response to the immediate and compelling desire for efficiency and quality improvements in the Canadian healthcare system.


Policy makers were motivated by the overall ranking of healthcare in Canada. A study from 2010 showed low rankings in quality of care, effective care, coordinated care, patient centered care, timeliness of care, efficiency, and equity, in comparison to Australia, Germany, the Netherlands, New Zealand, and the United Kingdom.

In order to test and visualize policy changes and other possible solutions, the CRHE planned to build a decision support tool to observe behavior and select appropriate policy changes that could ultimately increase life expectancy by increasing access to healthcare, increasing patient satisfaction, and changing the perception of healthiness.

Healthcare System Model Structure

Healthcare System Model Structure


AnyLogic simulation modeling was chosen to build the decision support tool due to its mulimethod modeling capabilities. System dynamics modeling was used to study aggregate behaviors (interactions between major groups), and agent-based modeling was used for adaptive behavior.

The model included descriptive data from the Irish healthcare system codified through content analysis, and quantitative data from the Central Statistics office of Ireland, OECD health statistics, and Eurostat health databases, which were codified through statistical analysis. Data from Ireland was used because the country experienced substantial strategic shifts, external economic shock, and could provide extensive, transparent documentation.

The documentation from the healthcare systems was compiled, run through a content analysis process, moved through a UML for structure, and plugged into AnyLogic as a platform to build the model and run scenarios.

The model structure of the healthcare system included elements, goals, and strategies. Elements included patients, physicians, other clinicians, hospitals, clinics, and corporations, including insurers and regulators. Goals were outcomes such as life expectancy and mortality, access to healthcare, and other determinants of health, as well as subjective outcomes such as satisfaction and perception.

Strategies and policies that were considered included:

  • Insurance- equity in accessibility
  • Sectoral- primary care and elder care
  • Capital investment- facilities and technology
  • Regulations- gatekeeping and models of care
  • Governance- public/private care and mergers


The ability to visualize the large amount of data and derive patterns was the greatest benefit achieved from this project. Variables such as life expectancy, expenditures, consumption, etc., could be plotted and observations could be made dependent upon country. In future research, the CRHE will test policy change scenarios and work to improve the healthcare system of Canada and other low ranking countries.

Watch the presentation of the project by Neil McEvoy from CRHE:

More Case Studies

  • 医薬品流通倉庫のモデル化
    数十億ドル規模売上を計上する、医薬品流通およびロジスティクス企業大手のカーディナル・ヘルス社(Cardinal Health)は、商標医薬品、ジェネリック医薬品、一般用医薬品(薬局で処方箋が無くても購入できる薬)、健康と美容アイテムおよび自社ブランド品を管理しています。彼らは、医薬品を取り巻く複雑な倉庫の流通問題に取り組みます。ブライアン・ヒース(カーディナル・ヘルス社上級解析ディレクター)とAnyLogicソフトウェアの経験ある担当者は、様々なビジネス問題を解決するためにエージェントベースのモデリングを使用し、年間300万ドル以上の経費を節減しました。
  • ハイブリッド・シミュレーションによる医療サポート-脳卒中専門救急車(Mobile Stroke Units)
    脳卒中で高度障害が起きたときの治療とリハビリの高コストの負担は老齢人口の増加でますます増えています。血栓症の多くは脳卒中を発症し、発症から4.5時間以内に血栓溶解の治療が必要になりますが、現在の搬送や病院管理では対応しきれていないのが現状です。そこで、脳卒中専門救急車(Mobile Stroke Units)が改善案として提案されました。
  • 医療ルーチンデータのシミュレーション・モデリング
    医療の専門家による様々な意思決定には、プランニング、テストおよびアセスメントツールを必要とします。医療の複雑な構造、相互作用およびプロセスは、常に変化と革新を繰り返し、課題が絶えることはありません。社会保険オーストリア協会(AASI)と提携するDWHシミュレーションサービスおよびウィーン工科大学のPatrick Einzinger氏およびChristoph Urach氏は、クリティカルな将来の意思決定の目的で、医療データを解析する機会を得ました。
  • 産科病棟シミュレーション
    このモデルは、建設中の病院の産科病棟をシミュレートします。モデルの目的は、新設病棟におけるリソース、キャパシティーおよび業務をシミュレートすることです。プロジェクトはスウェーデン ストックホルムのカロリンスカ大学病院で実施されました。
  • 入院患者治療キャパシティーの評価
  • 透析患者トータルケアのニーズ
    スウェーデン 首都ストックホルムは、諸国、諸地域と同様、様々な患者グループへのヘルスケアの必要性があります。各グループは独特な特徴、特性および課題を合わせてサブ集団と見なします。今回ご紹介するシミュレーション・プロジェクトは、透析患者(医療施設の来院頻度が高いグループ)に着目しました。
  • Disaster Response Applications Using Agent-Based Modeling
    In an effort to find practical operational solutions for response to an unexpected crisis or natural disaster, Battelle, world’s largest, non-profit, independent R&D organization, needed to test the effectiveness of a 48 hour shelter-in-place order for an Improvised Nuclear Device scenario. The goal was to reduce radiation dosages received during an uncoordinated mass evacuation, by comparing immediate evacuation and shelter-in-place order.
  • Evaluating Healthcare Policies to Reduce Rates of Cesarean Delivery
    The challenge of reducing the cesarean delivery rate has been recognized by numerous researchers for years. For the first time, in research conducted for the Washington State, Alan Mills, FSA MAAA ND, a research actuary, and his colleagues reproduced this part of the United States healthcare system in a simulation model to allow the stakeholders, including health agencies, insurers, clinicians, and legislators, to test their assumptions on the model to find the right solutions.
  • An Agent-Based Explanation for SPMI Living Situation Changes
    Over the past 60 years, the number of Severely and Persistently Mentally Ill (SPMI) patients in the US living in the community increased. Yet a growing minority of people with severe illness are worse off because they are homeless or incarcerated. In this case study, IBM Global Research and Otsuka Pharmaceuticals used an agent-based approach to model these remarkable swings.
  • Outpatient Appointment Scheduling Using Discrete Event Simulation Modeling
    Indiana University Health Arnett Hospital, consisting of a full-service acute care hospital and a multispecialty clinic, faced poor statistics because the number of no-show patients (those who don’t show up for their scheduled appointments) rose dramatically to 30%. This was primarily connected to the fact that clinic schedules were driven by individual preferences of the medical staff, which led to increased variations in scheduling rules. To eliminate the problem, the client wanted to develop a scheduling methodology that would benefit the clinic, doctors, and patients.