Maximizing Push Boat Fleet’s Net Voyage Revenue


InterBarge, a first-class waterway operator, affiliated with SCF Marine, a part of Seacor Holding Group, operates freight along the HPP Waterway (Hidrovia Parana Paraguay, located in Argentina, Paraguay, Brazil, and Uruguay) on a dedicated contract carriage. Both push boats and barges are preassigned to these contracts. During certain seasons of the year, these resources are free of contract commitment and/or have free convoy capacity on certain trips.

The company’s challenge was to use this free capacity as a fleet, maximizing net voyage revenue, and deliver the dedicated contract freights by choosing the best convoy sizes and vessel allocation.

The managers questioned how to schedule all of their operations through this new fleeting mode, where there is complete independence between push boats, barges, and nondedicated contracts, while including the dedicated contracts in the system. They wanted to analyze the behavior of the system where each push boat would decide, in an intelligent way, when arriving at a port or fleeting point, which is the best route to follow, and which barges they can use to build up temporary convoys.

Ite Consult found simulation modeling to be the best tool to provide InterBarge with the answers to these questions. The goals of the simulation project were:

  • To maximize net voyage revenue of the company vehicles and resources through a planning tool (deciding which trips to do, which contracts to commit, where to allocate push boats and barges, and more). 
  • To evaluate the risk of new push boats’ and barges’ acquisition. 
  • To create a tool to identify revenues and negotiate contract freight price. 
  • To create a tool to plan all operations on a short and long term basis.


The model was designed with AnyLogic, using both discrete event and agent based methodologies. Push boats and barges navigate along the rivers, stop in each node or port, and then decide if they should use it as a point to start a nondedicated contract carriage. Push boats or barges make decisions according to their geographical location at the moment the decision has to be made. The model calculates Time Charter Equivalent for each active/available contract and recommends the best convoy configuration, taking into account all potential parameters and constraints.

The input data included:

  • Available waterway demand and seasonality (contracts, products, prices, fees, and more). 
  • Fleet of push boats and barges (resource type, intake, speed, draft, power, bunker consumption, maintenance requirements, and more). 
  • Rivers and ports specifications (water levels, loading and unloading capabilities, rates for each product, and more). 
  • Distance between ports and destination points. 
  • Operation costs and timings of fleet usage and ports’ operations.

Waterway Logistics Model

Barge Operation Animation

Model constraints and parameters included: 
  • Restricted routes/nodes for push boats due to rivers’ water level or flag restrictions. 
  • Push boats’ pulling capacity when navigating upstream or downstream. 
  • Push boats’ speed when navigating upstream or downstream, loaded or unloaded. 
  • Bunker consumption. 
  • Contracts’ weekly offers and seasonality. 
  • Preassigned fleet. 
  • Barges’ intake by barge type, products’ cubic factor, and water level by month. 
  • Loading and unloading times.


The model simulates a 5-year period in less than 300 seconds, while considering nearly 250 external variables and multiple scenario options. This decision-support system allows users to easily identify the expected net voyage revenue for given resources and waterway freight transportation demand, and creates recommendations on which strategy to choose.

Users are provided with a group of key indicators such as tons delivered per contract, navigating times and costs, barge and push boat usage and locations, mooring and waiting times in each port, bunker consumption, etc. This information enables managers to make the best decision among those provided by the system. It also allows them to plan routes for push boats and convoys on a short or long term basis.

The output data is exported in Excel files in order to make additional reporting or analysis convenient. It is also possible to integrate the model with databases in the company’s existing IT infrastructure.

The resulting simulation model utilizes user-driven inputs and scenarios, and can be easily adapted to changes and/or new requirements.

More Case Studies

  • トンネル掘削機でのトンネル建設シミュレーション
    トンネル掘削機の休止による1時間のコストは、通常高いのが実情です。また、プロジェクト・マネージャーは、工事現場において作業遅れを回避するために最善を尽くさなければなりません。 Ruhr University Bochum in Germanyで開発されたシミュレーション・プロジェクトの目標は、可能性のある金銭上のロスを最小化するために、トンネル建設プロセスでのボトルネックを究明することができるシミュレーション・モデルを作成することでした。
  • ルアーブル港 鉄道ロジスティクス・シミュレーション
    フランスのルアーブル(Le Havre)港は、新しい多機能なターミナル構築の支援を必要としました。シミュレーションの要件は、列車/河川の荷船と他の既存のターミナル間のコンテナー移送のサポートでした。
  • フランス鉄道の最適化
    このプロジェクトはAnyLogicのコンサルティングチームによって、 陸上交通の導入・調査・試験を行うフランスの PREDIT向けに 開発されました。クライアントは国の鉄道貨物輸送が自動車輸 送と競争することが出来るか、さらに“Truck-Rail-Truck”輸送 の効果的な運用方法を検証しました。
  • 車両基地のキャパシティー・モデリング
    Aurizon社は700台を超える機関車と16,000を超える貨車の 管理している、オーストラリア最大の鉄道運営会社で、石炭、 鉄鉱石、鉱物の輸送に幅広く従事しています。鉱山から港ま で輸出用の石炭を運搬する、世界最大の鉄道輸送会社で す。Aurizon社は、効率を考え、車両基地のうち1箇所を他の 町に移転し、主に貨車と鉄道のメンテナンスや、配車に従事 させようと考えました。
  • 半導体サプライ・チェーンにおけるブルウィップ効果/Bullwhip Effect(需要予測)
    大手 半導体メーカーのインフィニオン社のサプラィチェーン管理は、経費削減を達成するために、マーケットのブルウィップ効果を調査し、マーケット動向を予測し、原材料から市場までのサプライ・チェーンのモデル構築するためにAnyLogicソフトウェアを利用しました。
  • Gojiiを使用したベストな在庫ポリシィの選択
    既存のサプライ・チェーンとS&OP(Sales and Operations Planning:販売および操業計画)ツール・セットは、選択された「予測」にマッチした供給量を管理するのに有効に利用できます。しかしながら、将来の需要を一つのフォーキャストで表すことはできません。既存のツールは、ビジネスに最良の結果を選ぶようには設計されていません。S&OPシステムを使用すると、フォーキャストのインプットと需要シグナルの間にギャップがあります。Gojiiはそのギャップを無くすためにDecisioTech社によって作成されたツールです。
  • 流通ネットワーク・プランニング&シミュレーションによる在庫の最適化
    ディアジオ社は英国の多国籍アルコール飲料企業です。ディアジオ・ロシアはロシアでトップ5に入るアルコール飲料の大手卸売店の1社で、収益が顧客サービスレベルと高い物流費にとても影響を受ける、伝統的な薄利ビジネスです。ディアジオ社はコンサルタント会社Amalgama, LLCの支援を受け、売上高が増加しましたが、物流費が大きかったため、予想より大きな利益を実現出来ませんでした。
  • Customer-Centric Transportation Network Modelling
    The public transportation company employed PwC Australia to develop a solution that could provide a customer-centric view of their railway infrastructure and help the company understand the current incident effects on rail network operations and how to improve the situation. PwC consultants decided to build a model of the transportation network that would simulate train movements, incidents, and customers at stations and in trains.
  • CSX Solves Railroad Operation Challenges with and without AnyLogic Rail Library
    CSX is a US railroad company that operates about 21,000 route miles (34,000 km). AnyLogic allows the railroad industry users to simulate line-of-road, terminal, and yard problems. The following three projects, completed by CSX in 2014, covered a variety of tasks that were solved using AnyLogic software.
  • Simulation Modeling of Offshore Offloading System for Arctic Oil and Gas Condensate Field
    The Novoportovskoye oil and gas condensate field is located in the Yamal peninsula and owned by Gazprom Neft, the fourth largest oil producer in Russia. Oil from the field is transferred via 100km pipeline to the sea terminal at Cape Kamenny, where it is loaded into arctic cargo tanks for further transportation. The main issues in planning tanker transportation in an arctic region are the harsh ice environment and difficult sea conditions.