GE Manufacturing Plant Uses AnyLogic for Real Time Decision Support


In 2012, GE opened a new battery manufacturing plant in conjunction with the launch of an innovative energy storage business. The new Durathon battery products, which are half the size of conventional lead acid batteries, but last ten times longer, are the result of GE’s $100 million initial investment in battery technology developed at GE’s Global Research Center (, 2014). Expanding the facility doubled production, added 100 new jobs, and brought the total factory workforce to 450 when at full capacity (, 2014).


GE’s exciting opportunity brought on many new challenges, such as increasing production throughput and yield under evolving processes and uncertainties, and reducing manufacturing costs in order to gain market share. With over 27,000 variables tracked daily, GE was equipped with a lot of data, but they lacked the means to answer questions, analyze the data properly, or test and evaluate options.

The GE Global Research Center sought out a powerful and flexible tool to analyze, not just the specific process, but the manufacturing system as a whole.


GE chose simulation modeling because it offered a dramatic return on investment, and simulation enabled the visualization of their system over time. The long term impacts could be evaluated with increased accuracy compared to using traditional computational, mathematical methods.

Full plant simulation development process

Full plant simulation development process

AnyLogic modeling and simulation software was chosen for its agent-based and multimethod modeling capabilities. It allowed GE to solve problems in any area, combine models, input multiple data sources, and run models anywhere for complete collaboration and real time decision making.

GE’s simulation models, built in AnyLogic, focused on determining baseline capacity with variability, simulating system dynamics, identifying bottlenecks, planning production ramp-up, guiding expansion, facilitating continuous improvement, evaluating P/E investment, and achieving real time production optimization.

Input Data: 

  • Process flow 
  • Type of machine (continuous, batch, single machine, and special machines including tube press and kiln) 
  • Machine cycle time 
  • Yield 
  • Machine MTBF/MTTR 
  • Staffing plan 
  • Setups, cleaning or special non-std work 
  • IPK’s


GE’s full plant simulation modeled manufacturing flow, and it was used for capacity planning (identify, evaluate, and prioritize projects), quantitatively analyzing bottlenecks, and evaluating improvement options. Real time operational decision support allowed GE to answer questions such as, “Do I need an additional operator in the next eight hours?”, quickly, simply, and accurately, by running what-if scenarios and optimizing results.

Manufacturing simulation model

AnyLogic software gave GE the tools to make the right probabilistic and multi-scenario informed decision, which resulted in clear visibility of day-to-day operations, increased production throughput, and decreased manufacturing costs.

Watch the video of Shanshan Wang, an Operations Researcher from GE Global Research, presenting this project at the AnyLogic Conference:

More Case Studies

  • 自動生産ラインのプランニングおよび最適化
    ドイツCentrotherm Photovoltaics AG 社は、太陽光発電、半導体およびマイクロエレクトロニクス業界への、技術および設備を提供するグローバルサプライヤーです。同社は、コストを最小限に抑え、スループットと信頼性を最大限にするため、最良の自動化生産ラインおよび工場構成を確認する必要がありました。
  • AnyLogicでキャパシティー分析
    NASSCOは、現在の生産および可能性のある新しい仕事の両方に関して、きわめて詳細でかつ正確なキャパシティー分析を提供するために、The Large Scale Computer Simulation Modeling System for Shipbuilding (LSMSe)と呼ばれる特注の分析システムを利用します。
  • トンネル掘削機でのトンネル建設シミュレーション
    トンネル掘削機の休止による1時間のコストは、通常高いのが実情です。また、プロジェクト・マネージャーは、工事現場において作業遅れを回避するために最善を尽くさなければなりません。 Ruhr University Bochum in Germanyで開発されたシミュレーション・プロジェクトの目標は、可能性のある金銭上のロスを最小化するために、トンネル建設プロセスでのボトルネックを究明することができるシミュレーション・モデルを作成することでした。
  • 船舶産業における生産計画
    イタリアは歴史的に、世界に誇るヨットやスーパーヨットを生産す る国として知られています。多数の有名なブランドを市場に浸 透させるために、原価管理とライトサイジングは製品とプロセス・ イノベーションと同様に重要です。豪華ヨットの製造工程は複 雑であり、また完成品と技量の質は落とすことができません。 ヨットの製造工程は膨大な時間および労働力を必要とし、多く の生産タスク、非常に熟練した手仕事が必要です。
  • 造船所はオーダー履行能力を検証するため、生産設備やその分布を可視化
    アドミラルティ造船所(Admiralty Shipyards JSC)は、ディーゼル潜水艦の大口注文に直面し、現在の生産設備で受注に十分対応できるか、できない場合は2016年までにどれだけ生産できるかを評価しなければなりませんでした。アドミラルティ造船所JSCはまた、受注に対応するために新たな生産設備が必要になるかを検証します。
  • アイスクリーム製造 シミュレート:制限認識および生産計画の最適化
    ウルグアイで最大手の乳製品製造会社Conaprole社は、生産ライン5本を稼働させ、ラインごとに異なる5種類の包装形態で、150SKU(Stock Keeping Unit)種類を超える商品を生産します。需要と供給のバランスを保つために彼らの計画を再構築して重要な商品の在庫切れを回避することが経営陣の挑戦になっていました。さらに、生産設備利用の最適化も求めていました。
  • Analysis of Management Strategies for the Aircraft Production Ramp-up
    The Airbus Group joined the European Union ARUM (Adaptive Production Management) project, which is focused on creating an IT solution for risk reduction, decision-making, and planning during new product ramp-ups. The project is aimed mainly at aircraft and shipbuilding industries. Simulation was chosen as a part of the ARUM solution, because it would allow the participants to reproduce the real production facility experience.
  • Simple Simulation Model Helps Intel Avoid Production Plant Downtime
    Intel factories used a particular type of equipment that often broke down, which caused capacity constraints. These expensive parts were used in critical factory operations, and the repairs took significant time, so it was necessary to have extra spare parts on hand to avoid downtimes. Broken parts caused constraints at some of the factories while other factories over purchased spares.
  • Modeling the Cladding Leak Detection Shop of a Nuclear Reactor's Module
    The cladding leak detection shop is part of an automated line of fuel assembly production. Leak control is based on heating the fuel element groups. While warming up, defective units eject the control gas, which is detected by a leak locator. The defected group is divided into two parts. Each part is screened in the same way until the leaking fuel element is found.
  • Improving Mining Outbound Logistics with Agent-Based Simulation Modeling
    One of the largest resource companies in the world, with over $80 billion in sales, decided to enter a new market. It was planning to build a new potash mine with 90% of the resources exported. They wanted to design a reliable supply chain, with a high speed of supply replenishing, and the ability to recover from natural disasters and man-made crises benefiting from such volatility. Amalgama and Goldratt companies contracted this project to design the potash mining operations and a full supply chain of outbound logistics.