Disaster Response Applications Using Agent-Based Modeling


Battelle is the world’s largest, non-profit, independent R&D organization, and is a worldwide leader in the development, commercialization, and transfer of technology. They manage or co-manage laboratories for the U.S. Department of Energy, the U.S. Department of Homeland Security, and an international nuclear laboratory in the United Kingdom.


In an effort to find practical operational solutions for a fast and effective response to an unexpected crisis or natural disaster, Battelle needed to test the effectiveness of a 48 hour shelter-in-place order for an Improvised Nuclear Device scenario (IND). The intended goal was to reduce radiation dosages received during an uncoordinated mass evacuation, by comparing immediate evacuation and shelter-in-place order.

Modeling a disaster, whether natural or man-made, represents many unique challenges. There are distinctive environments and physical consequences, and numerous scenario possibilities and threat vectors. In addition, response strategies are rarely implemented as planned, and there are unknown human reactions.


Simulation was chosen for the disaster modeling because it had the capability to evaluate the space of potential scenarios. Deterministic models had limitations incorporating factors, like fundamentally unpredictable human responses and the need to compare alternatives versus looking for exact answers.

AnyLogic software was a natural choice for Battelle, as the software was already being utilized in a broad range of projects within the organization, including:

  • Healthcare – Provider Resource Management, Clinical Workflow Modeling, Infection Control 
  • Economic Development and Industry Cluster Forecasting
  • Vehicle Fleet Logistics and Maintenance 
  • National Security and Disaster Response

In addition, AnyLogic’s agent-based capabilities allowed Battelle to capture the most important dynamics of a disaster event. Emergence, or emergent behavior, is a key principal in modeling human behavior. Also, a model can sometimes exhibit unexpected outcomes. Both of these issues can only be captured using agent-based modeling.

Disaster Response Simulation Framework

Disaster Response Model Framework

The comprehensive model framework included an environment of road networks, vehicles, drivers, and disaster events. The road network was built with road layouts from GIS databases, local highway agency data (speed limits, lane capacity), and agents as node points for greater control. Changes to the network, such as the flooding of roads or destruction of bridges, were incorporated into dynamic events as the disaster unfolded.

The physical limitations of vehicles were governed by parameter data provided by the US Census, Bureau of Transportation. Data from past disaster response studies was used to represent driver agent behaviors, taking into account the changes in irrational drivers in normal circumstances versus during a mass evacuation. The model also incorporated dynamic route finding (several interlinked agent state sets that were dynamically tracked and updated). In addition, all behavior states were linked to physical vehicle movement parameters to initiate vehicle stoppages as drivers became incapacitated.

Agent behavior variables from initial values were calibrated, and evacuation data was used from past disasters to set accuracy targets, since calibration and validation were critical steps in proving the validity of the simulation model. If no historical data was available, Battelle used data from other major transportation events, sensitivity analysis based on other disaster events, and survey data.

Disaster Response Simulation Model Structure

Model Structure

Dynamic contours were used to track regions of disaster consequences, often derived from other simulation models, to compartmentalize processing requirements. Contours updated in real time based on predicted weather patterns, land cover, etc., and multiple interlinked contour sets could be adapted to represent almost any disaster scenario (for example, flooding levels, fire spread, damage path, contamination/fallout spread). In the IND scenario, two main contour sets were used; blast radius levels (fireball and overpressure force contours) and fallout distribution (radiation levels in air and deposition on ground from various radioactive particle types).


The simulation model built using AnyLogic software compared immediate evacuation versus shelter-in-place order and showed that shelter-in-place order significantly reduced radiation dosage received, as well as cases of severe radiation poisoning for large INDs.

The model also produced downstream model outputs to test different disaster response strategies and find the best response strategy among several likely options. Battelle was able to incorporate emergency responder agents, multiple intervention scenarios, and interchangeable model components (different locations for same disaster scenario, or different scenario for same location), to achieve the goal of finding practical operational solutions for fast and effective responses to various unexpected crisises or natural disasters.

More Case Studies

  • 医薬品流通倉庫のモデル化
    数十億ドル規模売上を計上する、医薬品流通およびロジスティクス企業大手のカーディナル・ヘルス社(Cardinal Health)は、商標医薬品、ジェネリック医薬品、一般用医薬品(薬局で処方箋が無くても購入できる薬)、健康と美容アイテムおよび自社ブランド品を管理しています。彼らは、医薬品を取り巻く複雑な倉庫の流通問題に取り組みます。ブライアン・ヒース(カーディナル・ヘルス社上級解析ディレクター)とAnyLogicソフトウェアの経験ある担当者は、様々なビジネス問題を解決するためにエージェントベースのモデリングを使用し、年間300万ドル以上の経費を節減しました。
  • Oil Pipeline Network Development: Finding Bottlenecks and Choosing the Right Policies
    One of the largest oil and gas pipeline operators in North America was delivering oil to a client that was not always able to accept the incoming batches. The operator was challenged to quantify the system impacts of deferred downstream deliveries. They also needed to determine whether the existing tankage at upstream oil terminals would be adequate to store the deferred batches.
  • ハイブリッド・シミュレーションによる医療サポート-脳卒中専門救急車(Mobile Stroke Units)
    脳卒中で高度障害が起きたときの治療とリハビリの高コストの負担は老齢人口の増加でますます増えています。血栓症の多くは脳卒中を発症し、発症から4.5時間以内に血栓溶解の治療が必要になりますが、現在の搬送や病院管理では対応しきれていないのが現状です。そこで、脳卒中専門救急車(Mobile Stroke Units)が改善案として提案されました。
  • 医療ルーチンデータのシミュレーション・モデリング
    医療の専門家による様々な意思決定には、プランニング、テストおよびアセスメントツールを必要とします。医療の複雑な構造、相互作用およびプロセスは、常に変化と革新を繰り返し、課題が絶えることはありません。社会保険オーストリア協会(AASI)と提携するDWHシミュレーションサービスおよびウィーン工科大学のPatrick Einzinger氏およびChristoph Urach氏は、クリティカルな将来の意思決定の目的で、医療データを解析する機会を得ました。
  • 産科病棟シミュレーション
    このモデルは、建設中の病院の産科病棟をシミュレートします。モデルの目的は、新設病棟におけるリソース、キャパシティーおよび業務をシミュレートすることです。プロジェクトはスウェーデン ストックホルムのカロリンスカ大学病院で実施されました。
  • 入院患者治療キャパシティーの評価
  • 透析患者トータルケアのニーズ
    スウェーデン 首都ストックホルムは、諸国、諸地域と同様、様々な患者グループへのヘルスケアの必要性があります。各グループは独特な特徴、特性および課題を合わせてサブ集団と見なします。今回ご紹介するシミュレーション・プロジェクトは、透析患者(医療施設の来院頻度が高いグループ)に着目しました。
  • Evaluating Healthcare Policies to Reduce Rates of Cesarean Delivery
    The challenge of reducing the cesarean delivery rate has been recognized by numerous researchers for years. For the first time, in research conducted for the Washington State, Alan Mills, FSA MAAA ND, a research actuary, and his colleagues reproduced this part of the United States healthcare system in a simulation model to allow the stakeholders, including health agencies, insurers, clinicians, and legislators, to test their assumptions on the model to find the right solutions.
  • Shaping Healthcare Policy Using Simulation
    An initiative by the Department of Mechanical and Industrial Engineering at the University of Toronto, the Centre for Research in Healthcare Engineering (CRHE), was in response to the immediate and compelling desire for efficiency and quality improvements in the Canadian healthcare system.
  • An Agent-Based Explanation for SPMI Living Situation Changes
    Over the past 60 years, the number of Severely and Persistently Mentally Ill (SPMI) patients in the US living in the community increased. Yet a growing minority of people with severe illness are worse off because they are homeless or incarcerated. In this case study, IBM Global Research and Otsuka Pharmaceuticals used an agent-based approach to model these remarkable swings.