Customer-Centric Transportation Network Modelling


The sphere of public transportation services in Australia is undergoing a transformation in response to a change in demographics that requires inter-modal integration and major infrastructure investment by the Federal government. To better address new challenges, public transport companies need to understand the behavior of their networks from the customer’s point of view. Widespread use of smart cards at public transport allows them to collect the information needed to conduct such research.

The public transportation company employed PwC Australia to develop a solution that could provide a customer-centric view of their railway infrastructure and help the company understand the current incident effects on rail network operations and how to improve the situation. Specifically, the company wanted to:

  • Understand potential number of customers impacted by an incident (e.g. train derailment, motor breakdown, medical emergency). 
  • Take a high-level network view of incidents in order to understand network behavior when they occur. 
  • Provide customers with more accurate predictions of incident-related delays depending on where they are on the network. 
  • Support operational and maintenance decisions concerning incident responses, including planning of predicted response times, allocation of resources, and prioritization of incidents. 
  • Identify specific incidents upon which to perform root cause analysis, e.g. why certain incidents always occur more at a particular location or on a particular type of rolling stock type.

PwC consultants decided to build a model of the transportation network that would simulate train movements, incidents, and customers at stations and in trains.


To build the model, the consultants chose AnyLogic software due to its ability to combine various simulation methods in one model, which was needed to successfully model both train movements (discrete event modeling) and customer behavior (agent-based modeling). The second reason was its scalability: in AnyLogic, it is easy to extend an existing model to adapt it to network development plans and see how the system would work in a new setting.

The input data for the model was obtained from various sources, including the transportation company, government, and publicly available sources, and comprised of:

  • Network layout (signals, track geometry, stations, and platforms). 
  • Train data (train set types and capacity per carriage).  
  • Timetable (route, train type, number of carriages). 
  • Operating rules for recovering the network and in hot weather, including speed restrictions.  
  • Incident data (types of incidents). 
  • Passenger data (smart card data and existing usage statistics).

Public Transportation Simulation Model

Model Animation and Graphs

Train Graph

Train Graph

Train movement logic was reproduced using AnyLogic Rail Library. Also, it utilized some custom library components created in AnyLogic by the PwC specialists taking into account special aspects of this project.

First, the model provided the network view of customers at stations: it showed the number of customers currently waiting at each station on the network (including their direction of travel), and the number of passengers on each train.

What is more important, the model was designed to allow the company to analyze network’s incident recovery behavior and time. If an incident occurs at a railway, it may cause a long-lasting delay in the timetable, especially during rush hours. It may take several hours for the network to fully recover from the incident and for all the trains to start running on schedule after the initial problem is solved. That is why it was essential for the model output to include a Network Incident Graph that clearly showed the length of the effect of each incident on the whole network and enabled the users to test and compare different incident mitigation policies.

The main metric collected was Lost Customer Minutes (LCM), calculated as sum of delay minutes for all individual journeys within a particular train or a network segment. It was important to review LCM in the context of situations when these minutes were lost (e.g. minutes lost during a rush hour and a weekend had different values).

The output included the train graph, which is a conventional way of representing train movement in a network (see picture). Moreover, the consultants animated the model using a GIS map to visually present the processes occurring in the system. The train graph and network animation showed:

  • Train location on the network. 
  • Whether trains were running to the timetable. 
  • Whether trains were able to make return journeys.


The model allowed the users to obtain a passenger-centric lost customer minutes calculation, which is more precise than traditional train-centric methods that either seriously over- or underestimate LCM. This passenger-centric approach was possible due to the use of agent-based simulation.

The clients were able to measure impact of incidents on the network behavior to test and form policies for more efficient incident mitigation (e.g. setting up emergency teams dispatched at certain locations for quick medical help to minimize delays related to passengers’ health conditions). It also helped plan incident response prioritization policies according to the number of passengers affected. With the help of the simulation model, the users could evaluate their investment and business decisions according to their estimated impact on lost customer minutes.

Also, having LCM as the one customer-focused delay metric allowed the transportation company to create customer-focused targets and KPIs within its structure.

Video of the project presentation by Artem Parakhine at the AnyLogic Conference 2014:

Future consultants’ works include extending the model with other forms of transportation and future network elements. They also plan to simulate physical movements of passengers as pedestrians at stations to investigate problems of platform crowding.

More Case Studies

  • トンネル掘削機でのトンネル建設シミュレーション
    トンネル掘削機の休止による1時間のコストは、通常高いのが実情です。また、プロジェクト・マネージャーは、工事現場において作業遅れを回避するために最善を尽くさなければなりません。 Ruhr University Bochum in Germanyで開発されたシミュレーション・プロジェクトの目標は、可能性のある金銭上のロスを最小化するために、トンネル建設プロセスでのボトルネックを究明することができるシミュレーション・モデルを作成することでした。
  • ルアーブル港 鉄道ロジスティクス・シミュレーション
    フランスのルアーブル(Le Havre)港は、新しい多機能なターミナル構築の支援を必要としました。シミュレーションの要件は、列車/河川の荷船と他の既存のターミナル間のコンテナー移送のサポートでした。
  • フランス鉄道の最適化
    このプロジェクトはAnyLogicのコンサルティングチームによって、 陸上交通の導入・調査・試験を行うフランスの PREDIT向けに 開発されました。クライアントは国の鉄道貨物輸送が自動車輸 送と競争することが出来るか、さらに“Truck-Rail-Truck”輸送 の効果的な運用方法を検証しました。
  • 車両基地のキャパシティー・モデリング
    Aurizon社は700台を超える機関車と16,000を超える貨車の 管理している、オーストラリア最大の鉄道運営会社で、石炭、 鉄鉱石、鉱物の輸送に幅広く従事しています。鉱山から港ま で輸出用の石炭を運搬する、世界最大の鉄道輸送会社で す。Aurizon社は、効率を考え、車両基地のうち1箇所を他の 町に移転し、主に貨車と鉄道のメンテナンスや、配車に従事 させようと考えました。
  • 半導体サプライ・チェーンにおけるブルウィップ効果/Bullwhip Effect(需要予測)
    大手 半導体メーカーのインフィニオン社のサプラィチェーン管理は、経費削減を達成するために、マーケットのブルウィップ効果を調査し、マーケット動向を予測し、原材料から市場までのサプライ・チェーンのモデル構築するためにAnyLogicソフトウェアを利用しました。
  • Gojiiを使用したベストな在庫ポリシィの選択
    既存のサプライ・チェーンとS&OP(Sales and Operations Planning:販売および操業計画)ツール・セットは、選択された「予測」にマッチした供給量を管理するのに有効に利用できます。しかしながら、将来の需要を一つのフォーキャストで表すことはできません。既存のツールは、ビジネスに最良の結果を選ぶようには設計されていません。S&OPシステムを使用すると、フォーキャストのインプットと需要シグナルの間にギャップがあります。Gojiiはそのギャップを無くすためにDecisioTech社によって作成されたツールです。
  • 流通ネットワーク・プランニング&シミュレーションによる在庫の最適化
    ディアジオ社は英国の多国籍アルコール飲料企業です。ディアジオ・ロシアはロシアでトップ5に入るアルコール飲料の大手卸売店の1社で、収益が顧客サービスレベルと高い物流費にとても影響を受ける、伝統的な薄利ビジネスです。ディアジオ社はコンサルタント会社Amalgama, LLCの支援を受け、売上高が増加しましたが、物流費が大きかったため、予想より大きな利益を実現出来ませんでした。
  • 押し船(Push Boat)船舶の総航海収益を最大化
    SCF船舶(Seacorホールディンググループの一部)と提携した、航路システムのオペレーターであるInterBarge社は、専用の契約貨物船を使用し、HPP航路(パラグアイ、アルゼンチン、ブラジル及びウルグアイ) の貨物輸送を運営しています。タグボートとはしけ船はこれらの契約に予め割り当てられています。年間を通じて、ある期間や季節に、これらのリソースは契約無く、空いている期間があります。
  • CSX Solves Railroad Operation Challenges with and without AnyLogic Rail Library
    CSX is a US railroad company that operates about 21,000 route miles (34,000 km). AnyLogic allows the railroad industry users to simulate line-of-road, terminal, and yard problems. The following three projects, completed by CSX in 2014, covered a variety of tasks that were solved using AnyLogic software.
  • Design and Analysis of Marine System for Oil Transportation in the Arctic by Means of Simulation
    The Novoportovskoye oil and gas condensate field is located in the Yamal peninsula and is owned by Gazprom Neft, the fourth largest oil company in Russia. Oil from the field is transferred via a 100km pipeline to the sea terminal at Cape Kamenny (the Gulf of the Ob river), where it is loaded into arctic shuttle tankers for further transportation to Murmansk. The full field development will start in 2016 and continue for several decades.