CSX Solves Railroad Operation Challenges with and without AnyLogic Rail Library

CSX is a railroad company that operates about 21,000 route miles (34,000 km), including one of the three Class I railroads, which serves most of the East Coast of the United States, and reaches nearly two-thirds of the country’s population.


The Network Planning division’s role is critical to the company’s success. This division identifies where to add capacity to accommodate future growth, ensures infrastructure can support and sustain a high level of service, and tries to improve the efficiency of capital spending.


Network Planning uses a multistep approach to manage the network capability. They utilize analytical tools to monitor current service levels, identify appearing problems, and determine the root cause of these disruptions (if the problem is operational or infrastructural).


In addition, they analyze what possible solutions can be applied to the problem, including investment decisions, and which of these decisions will provide the best financial return. To get the right answers, the use of traditional analytical tools is insufficient. That is why, for these purposes, CSX employs simulation modeling technologies. They use AnyLogic software for many different purposes because it allows them to create models of various systems, at the required abstraction level, with a quick turnaround time.


AnyLogic allows the railroad industry users to simulate line-of-road, terminal, and yard problems. The following three projects, completed by CSX in 2014, covered a variety of tasks that were solved using AnyLogic software.


MGA Line Investment Planning

Problem:




A rail line that is jointly owned by CSX and their competitors was expected to see a large growth in demand from several coal mines. The high competition between the two companies meant that if one of them could not fulfill the demand, the other one would do so. CSX needed to identify the best operational/capital strategy to handle the increased business. They wanted to know the answers to these specific questions:

  • Did they have enough staging capacity on the line to stage empty unit coal trains to respond quickly to the new demand?  
  • Where were the best locations on the line to add the additional staging capacity if needed?

They utilized AnyLogic simulation modeling to find the answers.


Solution:

Rail Line Simulation Model

MGA Rail Line Simulation


The created supply-chain network model simulated the demand of empty trains from five coal mines, as well as the fulfillment of the demand, and staging of empty trains. The trains were modeled as agents moving across the network. By varying values of relevant parameters, users could infer the impacts of different factors to the train throughput (i.e. staging capacity, as well as loading speeds at the coal mines).


The model calculated the company’s achieved throughput, and the business lost by CSX, due to the lack of available trains.


Outcome:




The model provided a way for decision makers to gain insight into the system to help identify the maximum possible throughput. The simulation showed that the company did not have enough staging capacity to serve the increased demand, and it helped distinguish the highest priority capital investment projects to implement.

Locomotive Shop Optimization

Locomotive Shop Simulation Model


Nashville Locomotive Shop Redesign

Problem:




The CSX’s Nashville locomotive shop needed to be expanded in order to meet the higher level railroad network redesign. The facility included a quality maintenance shop and a roundhouse. The company’s mechanical department needed to select the best layout design from eight alternatives. The objective was to identify the layout that maximized the throughput of locomotive processing.

Solution:




This project utilized the special AnyLogic Rail Library to build a model of the locomotive shop and test the different designs.


In the model, 72% of the incoming locomotives went to the roundhouse, while 22% went to the maintenance shop. The remaining 6% could go to either of them, depending on the problem they had after further inspection. Service times in both shops differed.

Locomotives moved at five miles per hour in the system. There was one common queue, with nine spots, for both shops. A locomotive was pulled into the system if there was a spot available in the roundhouse, the maintenance shop, or the common queue. The numbers of spots available in both shops and in the queue were parameters that could be varied by the user.

Outcome:




The model was used by the mechanical department to test their assumptions by experimenting with the system, and as a decision support tool to determine which layout configuration was best. The model helped the specialists drive the conversation among the stakeholders and base their solution on the reliable data.


Network Performance Emulator

The company faced greater than expected demand growth, coupled with hard winter weather and resource constraints, which led to congestion on the northern tier of the CSX network. When they analyzed this problematic situation afterwards, the Network Planning team was trying to determine what happened on the network and could avoid these issues in the future.


As the research continued, they found out that it would be easier to understand the processes if they replaced the traditional analytical methods with a visual emulator. So, they decided to reproduce, or replay, the past system behavior in AnyLogic with the use of animation on a GIS map to better understand density, flow, and congestion processes in the network and improve decision making. All of the train movement data was imported to AnyLogic from the databases, predefining the behavior of the trains in the model. The emulator included the animated train movement with statistics and indicators making the data visually understandable.


The model was presented to the C-level officers and the customers and helped drastically raise the understanding of the issue among the stakeholders.


Rail Network Simulation

Rail Network Emulator



Watch the video of Jeremiah Dirnberger from CSX presenting these case studies at the AnyLogic Conference 2014:


More Case Studies

  • トンネル掘削機でのトンネル建設シミュレーション
    トンネル掘削機の休止による1時間のコストは、通常高いのが実情です。また、プロジェクト・マネージャーは、工事現場において作業遅れを回避するために最善を尽くさなければなりません。 Ruhr University Bochum in Germanyで開発されたシミュレーション・プロジェクトの目標は、可能性のある金銭上のロスを最小化するために、トンネル建設プロセスでのボトルネックを究明することができるシミュレーション・モデルを作成することでした。
  • ルアーブル港 鉄道ロジスティクス・シミュレーション
    フランスのルアーブル(Le Havre)港は、新しい多機能なターミナル構築の支援を必要としました。シミュレーションの要件は、列車/河川の荷船と他の既存のターミナル間のコンテナー移送のサポートでした。
  • フランス鉄道の最適化
    このプロジェクトはAnyLogicのコンサルティングチームによって、 陸上交通の導入・調査・試験を行うフランスの PREDIT向けに 開発されました。クライアントは国の鉄道貨物輸送が自動車輸 送と競争することが出来るか、さらに“Truck-Rail-Truck”輸送 の効果的な運用方法を検証しました。
  • 車両基地のキャパシティー・モデリング
    Aurizon社は700台を超える機関車と16,000を超える貨車の 管理している、オーストラリア最大の鉄道運営会社で、石炭、 鉄鉱石、鉱物の輸送に幅広く従事しています。鉱山から港ま で輸出用の石炭を運搬する、世界最大の鉄道輸送会社で す。Aurizon社は、効率を考え、車両基地のうち1箇所を他の 町に移転し、主に貨車と鉄道のメンテナンスや、配車に従事 させようと考えました。
  • 半導体サプライ・チェーンにおけるブルウィップ効果/Bullwhip Effect(需要予測)
    大手 半導体メーカーのインフィニオン社のサプラィチェーン管理は、経費削減を達成するために、マーケットのブルウィップ効果を調査し、マーケット動向を予測し、原材料から市場までのサプライ・チェーンのモデル構築するためにAnyLogicソフトウェアを利用しました。
  • Gojiiを使用したベストな在庫ポリシィの選択
    既存のサプライ・チェーンとS&OP(Sales and Operations Planning:販売および操業計画)ツール・セットは、選択された「予測」にマッチした供給量を管理するのに有効に利用できます。しかしながら、将来の需要を一つのフォーキャストで表すことはできません。既存のツールは、ビジネスに最良の結果を選ぶようには設計されていません。S&OPシステムを使用すると、フォーキャストのインプットと需要シグナルの間にギャップがあります。Gojiiはそのギャップを無くすためにDecisioTech社によって作成されたツールです。
  • 流通ネットワーク・プランニング&シミュレーションによる在庫の最適化
    ディアジオ社は英国の多国籍アルコール飲料企業です。ディアジオ・ロシアはロシアでトップ5に入るアルコール飲料の大手卸売店の1社で、収益が顧客サービスレベルと高い物流費にとても影響を受ける、伝統的な薄利ビジネスです。ディアジオ社はコンサルタント会社Amalgama, LLCの支援を受け、売上高が増加しましたが、物流費が大きかったため、予想より大きな利益を実現出来ませんでした。
  • 押し船(Push Boat)船舶の総航海収益を最大化
    SCF船舶(Seacorホールディンググループの一部)と提携した、航路システムのオペレーターであるInterBarge社は、専用の契約貨物船を使用し、HPP航路(パラグアイ、アルゼンチン、ブラジル及びウルグアイ) の貨物輸送を運営しています。タグボートとはしけ船はこれらの契約に予め割り当てられています。年間を通じて、ある期間や季節に、これらのリソースは契約無く、空いている期間があります。
  • Customer-Centric Transportation Network Modelling
    The public transportation company employed PwC Australia to develop a solution that could provide a customer-centric view of their railway infrastructure and help the company understand the current incident effects on rail network operations and how to improve the situation. PwC consultants decided to build a model of the transportation network that would simulate train movements, incidents, and customers at stations and in trains.
  • Simulation Modeling of Offshore Offloading System for Arctic Oil and Gas Condensate Field
    The Novoportovskoye oil and gas condensate field is located in the Yamal peninsula and owned by Gazprom Neft, the fourth largest oil producer in Russia. Oil from the field is transferred via 100km pipeline to the sea terminal at Cape Kamenny, where it is loaded into arctic cargo tanks for further transportation. The main issues in planning tanker transportation in an arctic region are the harsh ice environment and difficult sea conditions.